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ABSTRACT

A portable compiler for the language Oberon–2 is presented. Most related works pay for

portability with low compilation speed or poor code quality. Portability and efficiency have been

given the same importance in our approach. Hence, an automated retargetable code generation

has not been considered.

The compiler consists of a front–end and a back–end. The front–end does the lexical and

syntactic analysis, including type checking. It builds a machine–independent structure

representing the program. This structure is made up of a symbol table and an abstract syntax

tree, rather than a stream of pseudo–instructions coded in an "intermediate language". If no errors

are found, control is passed to the back–end which generates code from this intermediate

structure. This structure clearly separates the front–end which is machine–independent from the

back–end which is machine–dependent. While the front–end can remain unchanged, the

back–end has to be reprogrammed, when the compiler is retargeted to a new machine.

This compiler has been successfully used to port the Oberon System onto different computers.

Code generators have been implemented both for CISC and RISC processors. Differences in

processor architectures are reflected in the complexity of the back–end, the generated code

density and performance. The compiler is written in Oberon. New compilers have therefore to be

first compiled on an already working Oberon System. If such a system is not available, a version

of the compiler whose back–end produces C code may be used for the bootstrap.

The compilation techniques presented here are not restricted to Oberon compilers, but could be

used for other programming languages too. Nevertheless, Oberon and OP2 tend to the same

ideal: simplicity, flexibility, efficiency and elegance.

INTRODUCTION

Portability is an important criterion for program quality. A compiler is a program as well, and it

may be ported. If it should produce the same code as before on the new machine (cross

compiler), then it is not more difficult to port it than any other program also written in a higher

programming language. But if the produced code must run on the new machine, the compiler has

to be rewritten and it is not the same program any more. In that sense, the compiler is not, and

cannot be, portable. By the term portable compiler, we refer here to a compiler that needs

reasonably small effort to be adapted to a new machine and/or to be modified to produce new

code.

Most related work attempt to reduce this adaptation cost to a minimum, compromising the

compilation speed and the code quality. A classification of such automated retargetable code

generation techniques and a survey of the works on those techniques are presented in [1]. The

basic idea is to produce code for a virtual machine. This code is then expanded into real machine

instructions. The expansion can be done by hand–written translators [2] or by a

machine–independent code generation algorithm, in which case each intermediate language



2

instruction [3] or each recognized pattern of these [4] is expanded into a fixed pattern of target

machine instructions recorded in tables. Trees may replace linear code to feed the pattern

matching algorithm [5, 6, 7]. These techniques usually yield poor code quality, making a peephole

optimization phase necessary, which further increases the compilation time.

In our approach, we tried to find the right balance between code quality, compilation speed and

portability. We think it is worth–while investing, say three man–months, for a port, if the resulting

compiler is very fast and produces efficient code. Thus, a pattern matching or table–driven code

generation has not been considered. Instead, we looked at more conventional and faster

techniques, such as single–pass compilation [8, 9]. In a single–pass compiler, the compilation

phases are executed simultaneously. No intermediate representation of the source text is needed

between the different phases, making the compiler compact and efficient, but not very portable.

Indeed, since machine–dependent and machine–independent phases are mixed up, it is very

difficult to modify the compiler for a new machine.

One solution to the problem is to clearly separate the compilation phases into two groups: the

front–end consisting of the machine–independent phases (lexical and syntactic analysis, type

checking) and the back–end consisting of the machine–dependent phases (storage allocation,

code generation). Only the back–end must be modified when the compiler is ported. The

front–end enters declarations in a symbol table and builds an intermediate representation of the

program statements, an abstract syntax tree. If no errors were found, control is passed to the

back–end, which generates code from the syntax tree. Since this structure is guaranteed to be

free of errors, type checking or error recovery are not part of the back–end, which is a noteworthy

advantage. Only implementation restrictions must be checked. Another advantage of the

intermediate structure is that optional passes may be inserted to optimize the code. Such an

optimization phase cannot be easily embedded in a conventional single–pass compiler. The

front–end and the back–end are implemented separately as a set of modules.

MODULE STRUCTURE

Originally, OP2 has been designed to compile Oberon programs [10] and has been slightly

modified later to compile Oberon–2 programs [11, 12]. It consists of nine modules (see figure 1)

all written in Oberon.

The lowest module of the hierarchy is OPM, where M stands for machine. We must distinguish

between the host machine on which the compiler is running, and the target machine for which the

compiler is generating code. Most of the time, the two machines are the same, except during a

bootstrap or in case of a cross–compiler. The module OPM defines and exports several constants

used to parametrize the front–end. Some of these constants reflect target machine characteristics

or implementation restrictions. For example, these values are used in the front–end to check the

evaluation of constant expressions on overflow. But OPM has a second function. It works as

interface between the compiler and the host machine. This interface includes procedures to read

the text to be compiled, to read and write data in symbol files [13], and to display text (error

messages e.g.) onto the screen. All these input and output operations are strongly dependent on

the operating system. If the compiler resides in the Oberon System environment [14, 15], the

host–dependent part of OPM remains unchanged.
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The topmost module (OP2) is very short. It is the interface to the user, and therefore host

machine–dependent. It first calls the front–end with the source text to be compiled as parameter.

If no error is detected, it then calls the back–end with the root of the tree that was returned by the

front–end as parameter.

back–endfront–end

OPM

OPS

OPB

OPT

OPP

OPL

OPV

OPC

OP2

Figure 1.    Module import graph (an arrow from A to B means B imports A)

Between the highest and the lowest module, one finds the front–end and the back–end, which

consist of four, respectively three modules. There is no interaction during compilation between

these two sets of modules. The symbol table and the syntax tree are defined in module OPT and

are used by both the front–end and the back–end. This explains the presence of import arrows

from OPT to back–end modules visible in the import graph (figure 1). But there is no transfer of

control, such as procedure calls.

The front–end is controlled by the module OPP, a recursive–descent parser. Its main task is to

check syntax and to call procedures to construct the symbol table and the syntax tree. The parser

requests lexical symbols from the scanner (OPS) and calls procedures of OPT, the symbol table

handler, and of OPB, the syntax tree builder. OPB also checks type compatibility.

The back–end is controlled by OPV, the tree traverser. It first traverses the symbol table to enter

machine–dependent data (using OPM constants), such as the size of types, the address of

variables or the offset of record fields. It then traverses the syntax tree and calls procedures of

OPC (code emitter), which in turn synthesizes machine instructions using procedures of OPL

(low–level code generator).
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This module structure achieves to make the front–end target–independent as well as

host–independent, and to make the back–end host–independent.

SYMBOL TABLE

The symbol table contains information about declared constants, variables, types and procedures.

It is built by the front–end. The front–end uses it to check the context conditions of the language

and the back–end retrieves type information from it. The symbol table is a dynamically allocated

data structure with three different element types:

TYPE

Const = POINTER TO ConstDesc;

Object = POINTER TO ObjDesc;

Struct = POINTER TO StrDesc;

An Object is a record (more exactly a pointer to a record), which represents a declared, named

object. The object declaration in the compiler is the following:

ObjDesc = RECORD

left, right, link, scope: Object;

name: OPS.Name; (* key *)

leaf: BOOLEAN; (* procedure: leaf; variable: candidate to be allocated in register *)

mode: SHORTINT; (* constant, type, variable, procedure or module *)

mnolev: SHORTINT; (* imported from module –mnolev, or local at procedure nesting level mnolev *)

vis: SHORTINT; (* not exported, exported, read–only exported *)

typ: Struct;(* object type *)

conval: Const; (* numeric attributes *)

adr, linkadr: LONGINT (* storage allocation *)

END ;

The name of the object stored in the object itself (field name) is used as key to retrieve the object

in its scope. Each scope is organized as a sorted binary tree of objects (fields left and right) and is

anchored (field scope) to the owner procedure, which in turn belongs as object to the enclosing

scope. Parameters of the same procedure, fields of the same record and variables of the same

scope are additionally linked together (field link) to maintain the declaration order. The flag leaf

indicates whether a procedure is a leaf procedure or whether a variable is a candidate to be

allocated permanently in a register. The back–end may or may not use this information – Note

that this information could not be available in a single–pass compiler without intermediate

representation of the program. An object has always a type (field typ), which is described by a

record named StrDesc:

StrDesc = RECORD

form, comp: SHORTINT; (* basic or composite type, type class *)

mno: SHORTINT; (* imported from module mno *)

extlev: SHORTINT; (* record extension level *)

ref, sysflag: INTEGER; (* export reference *)

n, size: LONGINT; (* number of elements and allocation size *)

tdadr, offset: LONGINT; (* address of type descriptor *)

txtpos: LONGINT; (* text position *)

BaseTyp: Struct; (* base record type or array element type *)

link: Object; (* record fields or formal parameters of procedure type *)

strobj: Object (* named declaration of this type *)

END ;
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There are several classes of types: basic types like character, integer or set, and composite types

like array, open array or record (fields form and comp). The third element type of the symbol table

is ConstDesc. This record contains numeric attributes of objects, like values of declared or

anonymous constants:

ConstDesc = RECORD

ext: ConstExt; (* extension for string constant *)

intval: LONGINT;

intval2: LONGINT;

setval: SET;

realval: LONGREAL

END ;

An example is shown in figure 2 below:

form BaseTyp

value

left right

convalname
mode

typ

ConstDesc:

ObjDesc:

StrDesc:

Pi con

realA ityp var

vara varx

vary

integer

longint

array 4

3.14

CONST
Pi = 3.14;

TYPE
A = ARRAY 4 OF LONGINT;

VAR
i: INTEGER;
a: A;
x, y: LONGINT;

Figure 2.    Declarations and corresponding symbol table 

SYNTAX TREE

The front–end builds an abstract syntax tree representing all statements of the program. The

Oberon syntax is mapped into a binary tree of elements called NodeDesc:

Node = POINTER TO NodeDesc;

NodeDesc = RECORD

left, right, link: Node;

class, subcl: SHORTINT;

readonly: BOOLEAN;

typ: Struct;

obj: Object;

conval: Const

END ;
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A binary tree has been chosen because each Oberon construct can be decomposed into a root

element identifying the construct and two subtrees representing its components: an operator has

a left and a right operand, an assignment has a left and a right side, a While statement has a

condition and a sequence of statements, and so on. Some Oberon constructs are organized

sequentially: there are lists of actual parameters in procedure calls and sequences of statements

in structured statements. It would be expensive to insert dummy nodes to link these subtrees; an

additional link field in the node is much cheaper.

Each node has a class (field class) and possibly a subclass (field subcl) identifying the

represented Oberon construct. Each node has a type, which is a pointer (field typ) to a StrDesc of

the symbol table. Similarly, a leaf node representing a declared object contains a pointer (field

obj) to the corresponding ObjDesc of the symbol table. A ConstDesc may be attached (field

conval) to a node to describe a numeric attribute, such as the value of an anonymous constant. A

ConstDesc denoting the position in the source text is anchored to the root node of each

statement. This allows locating compilation errors reported by the back–end.

Figure 3 shows the representation of two statements manipulating variables declared in Figure 2.

i

var

i

var

array

a

var

conv index

*

y

var

...

statseqexpr

while

left right

link

+

x

var

assign

obj

typ

subcl

classNodeDesc:

WHILE expr DO statseq END ;

...

...

x := i * a[i] + y;

...

longint

integer integer

longint longint

longint longint

longint

dyadic

dyadic

Figure 3.    Statements and corresponding syntax tree 

The rules of numeric type compatibility are flexible in Oberon; for example, it is possible to

multiply integers with long integers, as shown in Figure 3. Note the conversion operator inserted

in the tree, freeing the back–end from type checking.
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While generating code for a node, one typically has to recursively evaluate left and right subtrees,

then the node itself, and finally the linked successors if any. A traversal of the tree looks like this:

Traverse(node: Node):

WHILE node # NIL DO

Traverse(node^.left);

Traverse(node^.right);

Do something with node;

node := node^.link

END

The intermediate representation could be a stream of instructions for a virtual machine; we have

preferred an internal abstract syntax tree for different reasons. A virtual machine instruction set

should be defined without knowing anything about the future target machines. Perhaps the

mapping of this instruction set to a real instruction set would not be easy, the virtual and real

machines being very different (RISC vs. CISC e.g.). Generating these pseudo–instructions

already needs a code generator, whereas building the syntax tree is a trivial recursive task easily

embedded in the recursive–descent parser. Since the tree is a natural mapping of the Oberon

syntax, each procedure of the parser returns as parameter the root of the subtree corresponding

to the construct just parsed by this procedure. Furthermore, the tree keeps the program structure

intact, so that a control–flow analysis necessary for an optimization phase can be done easily.

Without a tree, this analysis would be expensive, since basic blocks would have been dissolved in

the linear code. The reordering of program pieces is easier to perform in a tree than in an

instruction stream; for example, the conditional expression of a While statement may be evaluated

at the end of the loop, while first generating code for the right subtree of the While node, and then

for its left subtree.

The syntax tree has nevertheless one drawback over an intermediate linear code: it needs quite a

large heap space, but, nowadays, this is not a real problem any more.

CODE GENERATION

Although an extensive experience in compiler development is not necessary to write a new

back–end, knowledge of the subject is nevertheless an advantage. The front–end, which doesn’t

need any modifications, has only to be adapted to the new target machine by editing constants

exported from module OPM. Then, the storage allocation strategy must be adapted to the data

alignment requirements of the new processor. This allocation is done in module OPV, where a

procedure traverses the symbol table and distributes addresses to variables, offsets to record

fields, sizes to structured types, and so on. The last thing to do, but not least, is to rewrite the code

generator.

After storage allocation, code generation takes place. Between the two phases, OPT shortly gets

control in order to produce a symbol file. The whole process of code generation can be viewed as

the process of computing attribute values for each node of the tree. Attribute values of a node

depend on the attribute values of the children nodes and on the node’s class and type. Hence,

module OPV recursively traverses the syntax tree and calls, in a post–order fashion, procedures

of underlying modules computing attribute values for each traversed node, or subtree of nodes.

These procedures act similarly to an attribute evaluator of an attribute grammar. The emission of

code is actually a side effect of computing these attributes. Since the side effect (code) is more

important than the computed attribute values, and since these values will only be reused later to

compute the attribute values of parent nodes, they don’t need to be stored in the tree. Instead,
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they are passed as procedure parameters named Item during the recursive traversal of the tree.

An Item is a record of attributes representing the operand or the result of an operation. It indicates

where the operand is located (memory, register or immediate value e.g.). Items make it possible

to delay emission of code, so that processor addressing modes can be optimally used. There are

as many Item modes as processor addressing modes. Depending on the mode specified by a

field of the Item, other attributes like type, address, offset, register number, value of constant are

stored in Item fields as well. The complexity of a processor architecture is reflected in the

declaration of the Item. Typically, back–ends for CISC processors have Items with many fields

and many possible modes, whereas the ones for RISC are very simple.

Since almost each procedure of the code generator has to distinguish between the different Item

modes, the complexity of the back–end depends on the number of modes. Expression evaluation

for RISC processors is therefore very easy to code. A more difficult part of RISC back–ends is the

register allocation. The advantage in performance of RISC over CISC may be lost if a too simple

allocation strategy is used.

An excerpt of the module OPV is listed below, giving an idea how the back–end works:

PROCEDURE^ expr(n: OPT.Node; VAR x: OPL.Item); (* forward declaration *)

PROCEDURE design(n: OPT.Node; VAR x: OPL.Item);

VAR y: OPL.Item;

BEGIN

CASE n^.class OF

...

| index: design(n^.left, x); expr(n^.right, y); OPC.Index(x, y) (* x := x[y] *)

...

END ;

x.typ := n^.typ

END design;

PROCEDURE expr(n: OPT.Node; VAR x: OPL.Item);

VAR y: OPL.Item;

BEGIN

CASE n^.class OF

...

| dyadic:

expr(n^.left, x); ... expr(n^.right, y);

CASE n^.subcl OF

...

| plus: OPC.Add(x, y) (* x := x + y *)

...

END ;

...

END

x.typ := n^.typ

END expr;

PROCEDURE stat(n: OPT.Node);

VAR x: OPL.Item; L0, L1: OPL.Label;

BEGIN

WHILE n # NIL DO

CASE n^.class OF

...

| while:

L0 := OPL.pc; (* remind loop beginning *)

expr(n^.left, x); (* evaluate conditional expression into x *)
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OPC.CFJ(x, L1); (* if not x then jump to L1 *)

stat(n^.right); (* do statement sequence *)

OPC.BJ(L0); (* backwards jump to L0 *)

OPL.FixLink(L1) (* fix–up L1 with current pc *)

...

END ;

n := n^.link

END

END stat;

MEASUREMENTS AND BENCHMARKS

The front–end of OP2 (modules OPS, OPT, OPB and OPP), which remains the same for all

versions of OP2, consists of less than 3500 lines of Oberon source code. The length of the

back–end and the size of the machine code depend on the target processor architecture.

The very first back–end for OP2 was written by the author in less than three months for the

National Semiconductor NS32532 processor used in the Ceres workstation developed at ETH

[16]. The newest version (Oberon–2) of this back–end (OPL, OPC and OPV) for that machine

consists of less than 2500 lines of Oberon source code, of which about 500 are portable (module

OPV). The total size of the compiler (including modules OPM and OP2) is less than 6500 lines.

About 2000 lines (30% of the compiler) have to be rewritten when the compiler is ported. This

number may vary slightly depending on the target architecture. For the MIPS R2000, for example,

the back–end is 500 lines longer. The heap space required to store the syntax tree of a module

depends only on the size of the module, but not on the target processor architecture; it is about 8

times larger than the source text of the module.

Larger variations are noticed in the size of the machine code: the whole compiler for NS32532 is

62KB, whereas the one for the MIPS R2000 is 152KB. The different architecture is not only

reflected in code density, but in performance too: on a Ceres (NS32532, 25 MHz), it takes 32

seconds to recompile OP2; on a DECstation 5000 (MIPS R3000, 25 MHz), only 6.3 seconds.

Note that self–compilation time is a good indicator for compiler quality, since speed, compactness

and code quality are multiplicative factors contributing to the overall result.

Several other code generators have been implemented at the Institut für Computersysteme. They

have been used to port the Oberon System to different computers (Sun SPARCstation,

Macintosh, DECstation, IBM PS/2 and S/6000) [17, 18, 19]. In most cases, the new back–ends

have been developed on the Ceres workstation in about three or four months by a single person.

The object files, cross–compiled on Ceres, have been then transferred to the target machine

using a diskette or an RS232 line.

We also have a special back–end producing C code. The idea here is not to shirk the task of

writing a code generator, but to use this Oberon–to–C translator as a preprocessor for a C

compiler during the bootstrap of the compiler only. Remember that OP2 is written in Oberon; so, if

there is no machine with a running Oberon compiler at immediate disposal, the new OP2 cannot

be cross–compiled. So we execute the bootstrap on the target machine directly. We first translate

the new OP2 to C and then compile it using an existing C compiler. After a self–compilation step

of OP2, we can and should forget the C compiler.
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